
At Ease

Software Requirements and Design Document

Group Members

Lucius Guthrie

Mark Koren

Jesse Parker

At Ease - SRD - 1

Change History

Revision

Description Author Date

1 Document outline created Mark K. 9/8/2015

2 Added Use case diagrams Mark K. 9/8/2015

3 Added Activity diagrams Jesse P. 9/9/2015

4 Added ER diagram Jesse P. 9/10/2015

5 Added Purpose/Motivation and Scope Lucius G. 9/14/2015

6 Added Class diagram Jesse P. 9/14/2015

7 Added Functional Requirements Mark K. 9/15/2015

8 Added Project Goals Lucius G. 9/15/2015

9 Added Non-Functional Requirements Mark K. 9/15/2015

10 Added Project Description Lucius G. 9/15/2015

11 Edited Project Description and Goals Lucius G. 10/1/2015

12 Edited All activity diagrams and

descriptions

Jesse P. 10/1/2015

13 Edited Use Cases and Requirements Mark K. 10/1/2015

14 Edited Use Case for Rent Jesse P. 10/26/2015

15 Added Sequence diagrams for Messaging Lucius G. 11/2/2015

At Ease - SRD - 2

16 Added Sequence diagrams for Payments

and Class Diagrams.

Jesse P. 11/2/2015

17 Added Sequence diagrams for

Maintenance

Mark K. 11/2/2015

At Ease - SRD - 3

Table of Contents

1. Introduction - 5

1.1 Key Definitions - 5

1.2 Purpose and Motivation - 5

1.3 Scope - 5

1.4 Project Goals - 6

2. Project Description - 6

2.1 Tenant Portal - 6

2.2 Property Manager Portal - 6

2.3 Communication Portal - 6

2.4 Maintenance Request Priority Queue - 7

2.5 Rent Payment - 7

2.6 Rent Management - 7

2.7 Explanation and Justification of Third Party Tools - 7

3. Functional Requirements - 8

3.1 Priority Legend - 8

3.2 Rent - 9

3.3 Maintenance - 9

3.4 Communication - 10

3.5 Reviews - 10

3.6 Matching System - 11

4. Non-Functional Requirements - 12

4.1 Rent - 12

4.2 Maintenance - 12

4.3 Communication - 12

4.4 Reviews - 13

4.5 Matching System - 13

5. UML Diagrams - 15

5.1 Use Case Diagrams - 15

5.1.1 Top-Level Use Case Diagram - 15

5.1.2 Rent Use Case Diagram - 16

5.1.3 Maintenance Use Case Diagram - 16

5.1.4 Communication Use Case Diagram - 17

5.2 High Level Class Diagram - 18

5.3 Activity Diagrams - 19

5.3.1 Top-Level Activity Diagram - 19

5.3.2 Maintenance (Manager) Activity Diagram - 19

5.3.3 Rent (Manager) Activity Diagram - 20

5.3.4 Messaging (Manager) Activity Diagram - 20

At Ease - SRD - 4

5.3.5 Maintenance (Tenant) Activity Diagram - 21

5.3.6 Rent (Tenant) Activity Diagram - 21

5.3.7 Messaging (Tenant) Activity Diagram - 22

5.4 Sequence Diagrams - 23

5.4.1 Pay Rent Sequence Diagram - 23

5.4.2 View Payment History Sequence Diagram - 24

5.4.3 Edit Payment Sequence Diagram - 25

5.4.4 Add a Payment Account Sequence Diagram - 26

5.4.5 Send Message Sequence Diagram - 27

5.4.6 Read Message Sequence Diagram - 28

5.4.7 Initiate Maintenance Request Sequence Diagram - 29

5.4.8 View Maintenance Request Sequence Diagram - 30

5.4.9 Close Maintenance Request Sequence Diagram - 31

5.4.10 Cancel Maintenance Request Sequence Diagram - 32

5.5 Detailed Class Diagrams - 32

5.5.1 Entity Classes - 32

5.5.2 Detailed Overview of Classes - 34

5.5.3 Class Diagram for Payments - 35

5.5.4 Class Diagram for Messaging - 36

5.5.5 Class Diagram for Work Orders - 37

At Ease - SRD - 5

1. Introduction

1.1 Key Definitions

Manager - a user who is charged with overseeing all of the operations of a rented property

Tenant - a user who occupies land or property rented from a property manager

User - a person with one of two roles, tenant or manager, who uses the At Ease application

Maintenance Request/Work Order - a specific instruction submitted by a tenant user that

outlines the details of a maintenance defect in their property that does not meet proper standards for

the purpose of getting it fixed. Note: Work Order and Maintenance Request are used

interchangeably throughout the document, but they refer to the same thing, defined above.

Property/Room - One living unit that is occupied by a tenant and managed by a manager

Floor - A group of rooms. While this is expected to be on a floor of a building, it may be defined

differently by a manager.

Complex - A group of buildings.

Building - A group of floors.

System - A group of complexes. This is the highest level of grouping allowed.

1.2 Purpose and Motivation

The motivation for this project comes from the problems presented by renting a property from an

Independent Rental Owner (IRO). Today, tenants face many unwanted problems that all mostly

stem from poor communication between tenants and their property manager. Our app, At Ease,

seeks to remedy these problems by attacking their root, and creating an environment where tenants

can be at ease about the place they live.

1.3 Scope

The At Ease application is designed for the Google Android Platform. It is intended to be used by

small to medium sized property managers who, despite their small size, still desire an efficient

approach to manage and communicate to their tenants. Tenants who rent from property managers

that communicate via At Ease will have access to the app on any android device. Their account will

be connected to their manager’s account, and they will have access to all the features provided to

them by the At Ease application.

At Ease - SRD - 6

1.4 Project Goals

The overall goal of At Ease is to comfort both tenants and managers throughout the rental process.

This is reached by providing them with an environment in which all of their needs pertaining to

renting a property are handled in one intuitive and easy-to-use application. We want our app to be

easy to maneuver and work at a high level.

One major goal of this project is effectively managing our time to successfully implement all the

features that we desire. We think the three main features (rent, communication, and maintenance

requests) are the minimum of what we need to create an app that could compete on the real market.

Trying to add all of these features is a major risk to getting this project done and getting it done well.

We plan to manage this by effectively collaborating on the major issues of the project, but also

dividing up the smaller tasks to get done outside of our meeting times. We believe the app we are

trying to create will stretch us to not only do things that we have maybe never done before, but also

learn more about time management and effective work in the process.

2. Project Description

2.1 Tenant Portal

Each tenant will access the app through the specific lens, or portal, of a tenant user. This will make

the app less cluttered by taking out the options of the app that only pertain to managers. With the

proposed features we have right now, the tenant will have the following options: communicating to

their specified property manager; initiating, cancelling and checking the status of maintenance

requests; and paying their rent.

2.2 Property Manager Portal

Each property manager will access the app through the specific lens, or portal, of a manager user.

Like the tenant portal, the property manager portal will take out the features only pertaining to

tenants. With the proposed features we have right now, the property manager will have the

following options: communicating to their tenants; managing and closing maintenance requests; and

managing the rent payments from their tenants.

2.3 Communication Portal

At Ease - SRD - 7

One main feature of At Ease is the communication portal between tenants and their property

manager. The communication feature will not be much different than your average messaging

environment. We plan to use Sinch in-app instant messaging to be an outline for our

communication portal.

2.4 Maintenance Request Priority Queue

Another main feature of At Ease is the maintenance request feature, which provides a simple way

for tenants to submit maintenance requests to the property managers, and in turn a simple way for

the property manager to check these maintenance requests and clear them from the queue if they are

done.

2.5 Rent Payment

Rent payment will be a feature open solely to the tenant. We plan to use PayPal as a payment

processor in this feature. Tenants will have either a credit/debit card or a bank account linked to

their profile that they will use to pay the property manager for rent. The goal is to eventually

implement Stripe and Google Wallet to this feature as well.

2.6 Rent Management

Rent management will be a feature open solely to the property manager. Here the property managers

will be able to set rent for each of the properties they manage, and also see the status on whether

each of their tenants have paid rent for the specific rental time period.

2.7 Explanation and Justification of Third Party Tools

Parse - Parse is a third-party back-end system that streamlines the use of online database storage.

While there is a paid version, the free version should suffice for the scope of this project. Using

Parse will allow us to spend more time on creating features for the app, while also making it more

portable across different platforms. In addition, Parse has built-in User control, which will allow

easy integration with Facebook and Google log-ins.

Sinch - Sinch is a third party messaging API that allows in-app communication between different

users. Sinch is designed to be simple and easily imported into Android apps.

PayPal/Stripe/Google Wallet - These third-party programs will allow us to safely and securely

process payments from a User. We will only implement one at first, but the goal is to allow the use

of all three.

At Ease - SRD - 8

3. Functional Requirements

3.1 Priority Legend

The legend describing the different priority levels found throughout the functional and

nonfunctional requirements sections is found below, in table 3.1.

Priority Description Chance of

completion (by

Dec.)

Essential One of the main goals of the project. Unless
further research shifts the priorities of the app,
these will be completed.

100% > x > 95%

High A major component of the current plan, almost all
of these should be completed, and they are often
complementary to the essential tasks.

95% > x >75%

Medium While these tasks are important to complete, they
are not critical to the completion of the project.
Completion will be mainly based on the time
needed to implement.

75% > x > 40%

Low Tasks that would be nice to have, but are not
important at all for the completion of the app.

40% > x >15%

Stretch Great goals for the future, but unless the plan is
changed drastically, they will almost certainly not be
implemented by December.

15% > x >0%

Table 3.1 Functional Requirement Priority Legend

At Ease - SRD - 9

3.2 Rent

Requirement Description Priority

Edit Rent Allow the manager to edit the rent for a tenant. This
includes the collection frequency and dates.

Essential

Pay Rent System for a tenant to pay the required rent to the
manager.

Essential

Rent Reminders User specified reminders for upcoming rent
deadlines. A push notification would be good.
Ideally, clicking the notification takes the user to the
pay rent screen.

Medium

Request Rent Managers can manually or automatically request late
rent from a tenant.

Medium

Rent Penalty Automatically assess a set penalty to late rent, if the
option is enabled.

Low

Table 3.2 Rent Functional Requirements

3.3 Maintenance

Requirement Description Priority

Initiate Maintenance Request A tenant will create a maintenance request,
which will be sent to the manager’s inbox.

Essential

Cancel Maintenance Request Allow a tenant to cancel a previously issued
maintenance request.

Essential

Close Maintenance Request Allow a manager and tenant to jointly close a
maintenance request. A manager first marks a
maintenance request as complete. The tenant
must then approve this action. Once both
approve the action, the request is considered
closed.

Essential

Update Maintenance Request
Progress

The manager can update the status of the
request, and post progress updates to keep the
tenant informed.

Medium

At Ease - SRD - 10

Ask for Progress Update Allow the tenant to request a progress update
on a stale request.

Low

Attach Picture Tenants can attach a picture to a maintenance
request.

Low

Table 3.3 Maintenance Functional Requirements

3.4 Communication

Requirement Description Priority

Create an Inbox Have an inbox containing the
messages of a user.

Manager->Tenant direct
message

A direct message from the manager
to the tenant.

Essential

Tenant -> Manager direct
message

A direct message from the tenant
to the manager.

Essential

Manager -> Group
message

A group message from the manager
to a room, floor, building, complex,
or system.

Medium

Building bulletin board A place where users can place
messages and announcements
visible to the whole floor, building,
complex, or system. Ads here
would be useful as well.

Stretch

Tenant -> Room “door
note”

A system for tenants to leave
anonymous messages visible to
everyone in a room. The manager
will have access to see who posted
the message, to prevent abuse.

Stretch

Table 3.4 Communication Functional Requirements

3.5 Reviews

Requirement Description Priority

User Profiles A profile page for managers
and tenants. Could include

Stretch

At Ease - SRD - 11

contact info, a description, and
various other common social
media profile components.

Building Pages A profile page for a building. It
should include a description,
pictures, and a location.

Stretch

Tenant Reviews Reviews of a tenant, covering
their rent reliability and how
easy they are to rent to.

Stretch

Manager Reviews Manager reviews, covering
how easy they are to rent from.

Stretch

Building Reviews Building reviews, covering
quality, features, and livability.

Stretch

Building Amenities A list of amenities available at
the building.

Stretch

Table 3.5 Reviews Functional Requirements

3.6 Matching System

Requirement Description Priority

Searchable Buildings Allow users to search the
database of buildings by name,
location, or amenities available.

Stretch

Roommate Match Match tenants to other tenants
who would be compatible
roommates, based on a survey.

Stretch

Manager Match Match tenants to a nearby
manager or building, based on
a survey.

Stretch

Table 3.6 Matching System Functional Requirements

At Ease - SRD - 12

4. Non-Functional Requirements

4.1 Rent

Requirement Description Priority

Financial Reliability The payment system should be financially reliable,
meaning that if there is a failure of some sort, no
money is moved or lost.

Essential

Use Stripe Integrate Stripe as a payment option. Medium

Use PayPal Integrate PayPal as a payment option. High

Use Google Wallet Integrate Google Wallet as a payment option. Medium

Table 4.2 Rent Functional Requirements

4.2 Maintenance

Requirement Description Priority

Use Parse Store data in Parse. Essential

Maintenance Request Form Have a set form for tenants to enter data into
to create a maintenance request.

Essential

Customizable Form Allow managers to create their own custom
maintenance request form.

Stretch

Store Pictures Have a storage system for the pictures
uploaded with maintenance requests.

Low

Table 4.3 Maintenance Functional Requirements

4.3 Communication

Requirement Description Priority

Use Parse/Sinch Use a combination of Parse and Essential

At Ease - SRD - 13

Sinch to store and send messages
securely.

Use Parse Users Control user access using the Parse
User feature.

Essential

Bulletin Board
Recyclerview

Use a recyclerview to show the
Bulletin Board, and design the
layout to look like a physical one.

Low

Door Note Graphics Design the graphics of the door
note system to actually look like a
whiteboard on a door.

Low

Load Inbox Dynamically When loading the inbox,
dynamically show messages as they
load.

Medium

100+ Item Storage in
Inbox

Keep up to 100 items in an inbox
of a user.

High

Table 4.4 Communication Functional Requirements

4.4 Reviews

Requirement Description Priority

Compute an Average Rating Compute an average rating
from all the ratings given to a
user or place.

Stretch

Store 1000 character reviews Written reviews by a user
should be able to store up to
1000 characters, or more.

Stretch

Table 4.5 Reviews Functional Requirements

4.5 Matching System

Requirement Description Priority

Advanced Search Menu Have a standard, easy to use
form to allow advanced
searching of users and
buildings.

Stretch

At Ease - SRD - 14

Table 4.6 Matching System Functional Requirements

At Ease - SRD - 15

5. UML Diagrams

Note: Due to the scope of this project, only requirements that have been marked as “essential” will

be included in the diagrams found within this section.

5.1 Use Case Diagrams

5.1.1 Top-Level Use Case Diagram

The Top-Level use case diagram is shown in Figure 5.1. This shows a general overview of the

features that Actors of the system can access. The core features will be the main focus, while the

additional features and the stretch goal features will only be added if time permits, and the core

features are fully working.

Figure 5.1

At Ease - SRD - 16

5.1.2 Rent Use Case Diagram

The rent use case is shown in Figure 5.2. A Tenant can Pay Rent and Check Rent. A Manager can

Check Rent and Edit Rent. Pay Rent interacts with a third-party payment processing system, such as

PayPal.

Figure 5.2

5.1.3 Maintenance Use Case Diagram

The maintenance use case is shown in Figure 5.3. A tenant can initiate requests and cancel requests

that are not needed. Managers can Close completed requests, which will then allow tenants to

jointly close the completed request.

At Ease - SRD - 17

Figure 5.3

5.1.4 Communication Use Case Diagram

The communication use case diagram is shown in Figure 5.4. Both tenants and managers can send

messages, receive messages, and archive messages.

Figure 5.4

At Ease - SRD - 18

5.2 High Level Class Diagram

The high level class diagram is shown in Figure 5.5. The diagram shows some preliminary

relationships between classes that will exist in our system. We have not included full

implementation details in this version of the class diagram.

Figure 5.5

At Ease - SRD - 19

5.3 Activity Diagrams

5.3.1 Top-Level Activity Diagram

The top-level activity is shown in Figure 5.6. This activity outlines the way a User will navigate into

the other activities. The User will also be identified here as either a Tenant or a Manager.

Figure 5.6

5.3.2 Maintenance (Manager) Activity Diagram

The Maintenance (Manager) activity is shown in Figure 5.7. This diagram outlines how a manager

can view maintenance requests, mark them as done, or add a comment to a maintenance request.

Figure 5.7

At Ease - SRD - 20

5.3.3 Rent (Manager) Activity Diagram

The Rent (Manager) activity is shown in Figure 5.8. This diagram outlines how a manager can set

rent for a particular property, and view payment history of their tenants.

Figure 5.8

5.3.4 Messaging (Manager) Activity Diagram

The Messaging (Manager) activity is shown in figure 5.9. This outlines the process by which a

Manager can read, delete, and send messages to a Tenant.

Figure 5.9

At Ease - SRD - 21

5.3.5 Maintenance (Tenant) Activity Diagram

The Maintenance (Tenant) activity is shown in Figure 5.10. This illustrates how a Tenant can view

the different maintenance requests he has submitted, cancel or check the status of the request,

initiate a new request, or accept a request as completed.

Figure 5.10

5.3.6 Rent (Tenant) Activity Diagram

The Rent (Tenant) activity is shown in Figure 5.11. It outlines how a tenant can pay for their rent,

add a payment account, or check their payment history.

Figure 5.11

At Ease - SRD - 22

5.3.7 Messaging (Tenant) Activity Diagram

The Messaging (Tenant) activity is shown in Figure 5.12. The activity describes how a Tenant can

read, delete, and send messages to a manager.

Figure 5.12

At Ease - SRD - 23

5.4 Sequence Diagrams

5.4.1 Pay Rent Sequence Diagram

The Tenant will open the Rent Pay Activity, then they will have to enter their credit card

information as well as the amount they want to pay. When the Tenant is done, they will click the

confirm button, which will start the process of making the Stripe.Card object with their card

information. The card will be validated and a Stripe.charge object will be created. The charge object

will hold the card object as well as the amount that the Tenant is paying. It will then process the

charge and the payment will be stored in our database. The sequence diagram for paying rent is

shown in Figure 5.13.

Figure 5.13

At Ease - SRD - 24

5.4.2 View Payment History Sequence Diagram

To View Payment History, the User (Tenant or Manager) will click the Payment History Activity.

The activity will get the payments from the database and display them in a list format through the

Payment History Recycler View. After the view is populated, all of the payments will be available

for viewing. The sequence diagram for viewing payment history is shown in Figure 5.14.

Figure 5.14

At Ease - SRD - 25

5.4.3 Edit Payment Sequence Diagram

To Edit Payment Settings, the manager will open the Edit Payment Settings Activity. This activity

will have editable fields for the Manager to use to change their various settings. When the Manager

is finished editing their various settings, they can click the save button to save their new settings.

When the save button is pressed, the manager settings will be stored in the database and will be

effective immediately. The sequence diagram for editing payment is shown in Figure 5.15.

Figure 5.15

At Ease - SRD - 26

5.4.4 Add a Payment Account Sequence Diagram

To add a payment account, a Manager must open the Stripe Connect Activity. The Stripe Connect

Activity will first set a new WebViewClient to the StripeWebClient. Once the StripeWebClient is

set, the Stripe Connect Activity will load the URL for the Stripe Connect Login webpage into the

webView that is displayed. The Manager must then enter their stripe information and successfully

login to their stripe account. Once successfully logged in to their stripe account, the

StripeWebClient will process the API response from Stripe and extract the authorization key. The

client then sends an authorization request to Stripe with this authorization key. A response will

come back from stripe containing the access Token information for the manager’s stripe account.

With this information At-Ease will be able to charge tenants on behalf of the manager and send the

money to the manager’s account. The access token information is stored in the database, and a

payment account has been successfully added to At-Ease. The sequence diagram for adding a

payment account is shown in Figure 5.16.

Figure 5.16

At Ease - SRD - 27

5.4.5 Send Message Sequence Diagram

To send a message, a user (both tenant and manager), opens the List User Activity, which will list all

of the other AtEase users that they have access to communicate with. From the user perspective, it

runs very similarly to an average messaging component. The user chooses the message thread of

whom they wish to communicate, which opens the Message Activity. The Message Activity presents

a screen very similar to a typical messaging component, with an area to type a message at the bottom

of the screen. After the user types a message and sends it, the Message Service communicates with

the Sinch client that adds the message to the message thread for both the sender and the receiver.

The sequence diagram for sending a message is shown in Figure 5.17.

Figure 5.17

At Ease - SRD - 28

5.4.6 Read Message Sequence Diagram

Reading a message is very similar to sending a message, it just stops before the action of sending a

message. The user chooses the message thread from List User Activity, and the Message Activity

makes a call to the Parse database to get the history of all messages (read and unread) between the

two users. The Message Adapter formats the messages into the Message Activity that makes it into a

typical message thread (i.e. sender messages on the right, and receiver messages on the left). The

sequence diagram for reading a message is shown in Figure 5.18.

Figure 5.18

At Ease - SRD - 29

5.4.7 Initiate Maintenance Request Sequence Diagram

Figure 5.19 shows the sequence diagram for initiating a new maintenance request. This is a very

simple workflow. The user first initiates a new work order, which creates a

NewWorkOrderExpandableActivity. The new activity loads up with a screen for the user to enter

data into. Once the user has entered all of the data, they may submit. The user is prompted to ensure

that they want to take this action, and then the work order is saved to the Parse database. At this

point, the activity is finished.

Figure 5.19

At Ease - SRD - 30

5.4.8 View Maintenance Request Sequence Diagram

The sequence diagram for the viewing of a Maintenance Request (Work Order) is shown in Figure

5.20. The first part of the sequence shows how the inbox is populated, which will be repeated in all

of the other maintenance request sequence diagrams as well. When a user opens the inbox, the

program searches the Parse database for all relevant work orders, and then displays them in a

recyclerview. A maintenance request is relevant if the current user is either the manager or the tenant

on said request. To view a maintenance request in detail, the user clicks on the respective item in the

recyclerview. The work order is then passed to the ViewWorkOrderActivity. This activity is almost

the same as the NewWorkOrderExpandableActivity, except all editable fields are now un-editable,

so this form is just to display all of the data in a maintenance request. When the user is finished, they

may close the form and leave the inbox, finishing all involved activities.

Figure 5.20

At Ease - SRD - 31

5.4.9 Close Maintenance Request Sequence Diagram

The sequence diagram for closing a maintenance request is shown in Figure 5.21. In this sequence,

the inbox is first populated as previously stated. Then, the user, specifically a manager in this case,

swipes an item in the list to the right. The manager is prompted to ensure he wants to do this, and

then an alert is sent to the tenant who opened the request. If the tenant agrees that the maintenance

request was resolved, then the work order is deleted.

Figure 5.21

At Ease - SRD - 32

5.4.10 Cancel Maintenance Request Sequence Diagram

The sequence diagram for canceling a maintenance request is shown in Figure 5.22. The inbox is

first populated as previously stated. Then a user, specifically a tenant in this case, swipes an item to

the right. The user is then prompted to ensure that they want to delete a maintenance request. If so,

the work order is then deleted from the Parse database.

Figure 5.22

5.5 Detailed Class Diagrams

5.5.1 Entity Classes

This class diagram shows all of the entities of our System. Each class contained here will extend the

ParseObject in order to be easily mapped directly to the Parse Database. Other classes will have

access to each of these Entity Classes but those connections have been omitted for readability. The

entity class diagram is shown in Figure 5.23.

At Ease - SRD - 33

Figure 5.23

At Ease - SRD - 34

5.5.2 Detailed Overview of Classes

This is a class diagram that details all of the classes we expect to have in our System. Currently,

these Classes should give us all of the functionality that we want in our application. A few of the

Entity classes are used throughout this diagram, it is assumed they would have an association, but

they have been omitted for readability. This diagram is broken into three large fragments, which can

be found in Figures 5.24, 5.25, and 5.26. The detailed overview of all the classes is shown in Figure

5.23.

Figure 5.23

At Ease - SRD - 35

5.5.3 Class Diagram for Payments

This is a close-up of the Payment Activity Classes from the Detailed Class Diagram. Each of the

Payment Activities that is associated with the Main activity corresponds to use cases and they each

serve an independent purpose. The class diagram for payments is shown in Figure 5.24.

Figure 5.24

At Ease - SRD - 36

5.5.4 Class Diagram for Messaging

This is a close-up of the Messaging Activity Classes from the Detailed Class Diagram. The List User

Activity is connected to the main activity, and the activities and entities related to messaging are

connected to List User Activity. The class diagram for messaging is shown in Figure 5.25

Figure 5.25

At Ease - SRD - 37

5.5.5 Class Diagram for Work Orders

This is a close-up of the Work Order Activity Classes from the Detailed Class Diagram. The Work

Order Inbox and the New Work Order Activity both connect to the Main Activity. The class

diagram for work orders is shown in Figure 5.26

Figure 5.26

