At Ease

Software Requirements and Design Document

Happiness For Keeps

Group Members
Lucius Guthrie
Mark Koren

Jesse Parker

Change History

Revision | Description Author Date
#
1 Document outline created Mark K. 9/8/2015
2 Added Use case diagrams Mark K. 9/8/2015
3 Added Activity diagrams Jesse P. 9/9/2015
4 Added ER diagram Jesse P. 9/10/2015
5 Added Purpose/Motivation and Scope Lucius G. 9/14/2015
6 Added Class diagram Jesse P. 9/14/2015
7 Added Functional Requirements Mark K. 9/15/2015
8 Added Project Goals Lucius G. 9/15/2015
9 Added Non-Functional Requirements Mark K. 9/15/2015
10 Added Project Description Lucius G. 9/15/2015
11 Edited Project Description and Goals Lucius G. 10/1/2015
12 Edited All activity diagrams and Jesse P. 10/1/2015
descriptions
13 Edited Use Cases and Requirements Mark K. 10/1/2015
14 Edited Use Case for Rent Jesse P. 10/26/2015
15 Added Sequence diagrams for Messaging | Lucius G. 11/2/2015

At Ease - SRD -1

16

Added Sequence diagrams for Payments Jesse P. 11/2/2015
and Class Diagrams.
17 Added Sequence diagrams for Mark K. 11/2/2015

Maintenance

At Ease - SRD -2

Table of Contents

1. Introduction -5
1.1 Key Definitions -5
1.2 Purpose and Motivation -5
1.3 Scope -5
1.4 Project Goals -6
2. Project Description - 6
2.1 Tenant Portal -6

2.2 Property Manager Portal - 6
2.3 Communication Portal -6

2.4 Maintenance Request Priority Queue -7

2.5 Rent Payment -7

2.6 Rent Management -7

2.7 Explanation and Justification of Third Party Tools -7

3. Functional Requirements - 8
3.1 Priority I.egend - 8
3.2 Rent -9
3.3 Maintenance -9

3.4 Communication - 10
3.5 Reviews - 10
3.6 Matching System - 11
4. Non-Functional Requirements - 12
4.1 Rent - 12
4.2 Maintenance - 12
4.3 Communication - 12
4.4 Reviews - 13
4.5 Matching System - 13
5. UML Diagrams - 15
5.1 Use Case Diagrams - 15
5.1.1 Top-Level Use Case Diagram - 15
5.1.2 Rent Use Case Diagram - 16
5.1.3 Maintenance Use Case Diagram - 16
5.1.4 Communication Use Case Diagram - 17
5.2 High T.evel Class Diagram - 18
5.3 Activity Diagrams - 19
5.3.1 Top-Level Activity Diagram - 19

5.3.2 Maintenance (Manager) Activity Diagram - 19
5.3.3 Rent (Manager) Activity Diagram - 20
5.3.4 Messaging (Manager) Activity Diagram - 20

At Ease-SRD -3

5.3.5 Maintenance (Tenant) Activity Diagram - 21
5.3.6 Rent (Tenant) Activity Diagram - 21
5.3.7 Messagin enant) Activity Diagram - 22

5.4 Sequence Diagrams - 23

5.4.1 Pay Rent Sequence Diagram - 23

5.4.2 View Payment History Sequence Diagram - 24

5.4.3 Edit Payment Sequence Diagram - 25
5.4.4 Add a Payment Account Sequence Diagram - 26

5.4.5 Send Message Sequence Diagram - 27

5.4.6 Read Message Sequence Diagram - 28

5.4.7 Initiate Maintenance Request Sequence Diagram - 29

5.4.8 View Maintenance Request Sequence Diagram - 30

5.4.9 Close Maintenance Request Sequence Diagram - 31

5.4.10 Cancel Maintenance Request Sequence Diagram - 32
5.5 Detailed Class Diagrams - 32

5.5.1 Entity Classes - 32

5.5.2 Detailed Ovetview of Classes - 34

5.5.3 Class Diagram for Payments - 35

5.5.4 Class Diagram for Messaging - 36
5.5.5 Class Diagram for Work Orders - 37

At Ease - SRD - 4

1. Introduction

1.1 Key Definitions

Manager - a user who is charged with overseeing all of the operations of a rented property
Tenant - a user who occupies land or property rented from a property manager

User - a person with one of two roles, tenant or manager, who uses the At Ease application
Maintenance Request/Work Order - a specific instruction submitted by a tenant user that
outlines the details of a maintenance defect in their property that does not meet proper standards for
the purpose of getting it fixed. Note: Work Order and Maintenance Request are used
interchangeably throughout the document, but they refer to the same thing, defined above.
Property/Room - One living unit that is occupied by a tenant and managed by a manager

Floor - A group of rooms. While this is expected to be on a floor of a building, it may be defined
differently by a manager.

Complex - A group of buildings.

Building - A group of floors.

System - A group of complexes. This is the highest level of grouping allowed.

1.2 Purpose and Motivation

The motivation for this project comes from the problems presented by renting a property from an
Independent Rental Owner (IRO). Today, tenants face many unwanted problems that all mostly
stem from poor communication between tenants and their property manager. Our app, At Ease,
seeks to remedy these problems by attacking their root, and creating an environment where tenants

can be at ease about the place they live.

1.3 Scope

The At Ease application is designed for the Google Android Platform. It is intended to be used by
small to medium sized property managers who, despite their small size, still desire an efficient
approach to manage and communicate to their tenants. Tenants who rent from property managers
that communicate via At Ease will have access to the app on any android device. Their account will
be connected to their manager’s account, and they will have access to all the features provided to

them by the At Ease application.

At Ease - SRD -5

1.4 Project Goals

The overall goal of At Ease is to comfort both tenants and managers throughout the rental process.
This is reached by providing them with an environment in which all of their needs pertaining to
renting a property are handled in one intuitive and easy-to-use application. We want our app to be
easy to maneuver and work at a high level.

One major goal of this project is effectively managing our time to successfully implement all the
features that we desire. We think the three main features (rent, communication, and maintenance
requests) are the minimum of what we need to create an app that could compete on the real market.
Trying to add all of these features is a major risk to getting this project done and getting it done well.
We plan to manage this by effectively collaborating on the major issues of the project, but also
dividing up the smaller tasks to get done outside of our meeting times. We believe the app we are
trying to create will stretch us to not only do things that we have maybe never done before, but also
learn more about time management and effective work in the process.

2. Project Description

2.1 Tenant Portal

Each tenant will access the app through the specific lens, or portal, of a tenant user. This will make
the app less cluttered by taking out the options of the app that only pertain to managers. With the
proposed features we have right now, the tenant will have the following options: communicating to
their specified property manager; initiating, cancelling and checking the status of maintenance
requests; and paying their rent.

2.2 Property Manager Portal

Each property manager will access the app through the specific lens, or portal, of a manager user.
Like the tenant portal, the property manager portal will take out the features only pertaining to
tenants. With the proposed features we have right now, the property manager will have the
following options: communicating to their tenants; managing and closing maintenance requests; and
managing the rent payments from their tenants.

2.3 Communication Portal

At Ease - SRD -6

One main feature of At Ease is the communication portal between tenants and their property
manager. The communication feature will not be much different than your average messaging
environment. We plan to use Sinch in-app instant messaging to be an outline for our
communication portal.

2.4 Maintenance Request Priority Queue

Another main feature of At FEase is the maintenance request feature, which provides a simple way
for tenants to submit maintenance requests to the property managers, and in turn a simple way for
the property manager to check these maintenance requests and clear them from the queue if they are
done.

2.5 Rent Payment

Rent payment will be a feature open solely to the tenant. We plan to use PayPal as a payment
processor in this feature. Tenants will have either a credit/debit card or a bank account linked to
their profile that they will use to pay the property manager for rent. The goal is to eventually
implement Stripe and Google Wallet to this feature as well.

2.6 Rent Management

Rent management will be a feature open solely to the property manager. Here the property managers
will be able to set rent for each of the properties they manage, and also see the status on whether
each of their tenants have paid rent for the specific rental time period.

2.7 Explanation and Justification of Third Party Tools

Parse - Parse is a third-party back-end system that streamlines the use of online database storage.
While there is a paid version, the free version should suffice for the scope of this project. Using
Parse will allow us to spend more time on creating features for the app, while also making it more
portable across different platforms. In addition, Parse has built-in User control, which will allow
easy integration with Facebook and Google log-ins.

Sinch - Sinch is a third party messaging API that allows in-app communication between different
users. Sinch is designed to be simple and easily imported into Android apps.
PayPal/Stripe/Google Wallet - These third-patty programs will allow us to safely and securely

process payments from a User. We will only implement one at first, but the goal is to allow the use
of all three.

At Ease - SRD -7

3. Functional Requirements

3.1 Priority Legend

The legend describing the different priority levels found throughout the functional and

nonfunctional requirements sections is found below, in table 3.1.

Priority Description Chance of
completion (by
Dec.)
Essential One of the main goals of the project. Unless 100% > x > 95%
further research shifts the priorities of the app,
these will be completed.
High A major component of the current plan, almost all | 95% > x >75%
of these should be completed, and they are often
complementary to the essential tasks.
Medium While these tasks are important to complete, they 75% > x > 40%
are not critical to the completion of the project.
Completion will be mainly based on the time
needed to implement.
Low Tasks that would be nice to have, but are not 40% > x >15%
important at all for the completion of the app.
Stretch Great goals for the future, but unless the plan is 15% > x >0%

changed drastically, they will almost certainly not be
implemented by December.

Table 3.7 Functional Requirement Priority Legend

At Ease - SRD - 8

3.2 Rent

Requirement Description Priority

Edit Rent Allow the manager to edit the rent for a tenant. This | Essential

includes the collection frequency and dates.

Pay Rent System for a tenant to pay the required rent to the Essential

manager.

Rent Reminders User specified reminders for upcoming rent Medium

deadlines. A push notification would be good.
Ideally, clicking the notification takes the user to the
pay rent screen.

Request Rent Managers can manually or automatically request late [Medium

rent from a tenant.

Rent Penalty Automatically assess a set penalty to late rent, if the | Low

option is enabled.
Table 3.2 Rent Functional Requirements

3.3 Maintenance

Requirement Description Priority

Initiate Maintenance Request | A tenant will create a maintenance request, Essential
which will be sent to the manager’s inbox.

Cancel Maintenance Request | Allow a tenant to cancel a previously issued Essential
maintenance request.

Close Maintenance Request | Allow a manager and tenant to jointly close a | Essential
maintenance request. A manager first marks a
maintenance request as complete. The tenant
must then approve this action. Once both
approve the action, the request is considered
closed.

Update Maintenance Request | The manager can update the status of the Medium

Progress request, and post progress updates to keep the
tenant informed.

At Ease - SRD -9

Ask for Progress Update Allow the tenant to request a progress update | Low
on a stale request.
Attach Picture Tenants can attach a picture to a maintenance | Low

request.

Table 3.3 Maintenance Functional Requirements

3.4 Communication

Requirement Description Priority
Create an Inbox Have an inbox containing the
messages of a user.
Manager->Tenant direct A direct message from the manager | Essential
message to the tenant.
Tenant -> Manager direct | A direct message from the tenant Essential
message to the manager.
Manager -> Group A group message from the manager | Medium
message to a room, floor, building, complex,
of system.
Building bulletin board A place where users can place Stretch
messages and announcements
visible to the whole floor, building,
complex, or system. Ads here
would be useful as well.
Tenant -> Room “door A system for tenants to leave Stretch

note”

anonymous messages visible to
everyone in a room. The manager
will have access to see who posted
the message, to prevent abuse.

Table 3.4 Communication Functional Requirements

3.5 Reviews

Requirement

Description

Priority

User Profiles

A profile page for managers
and tenants. Could include

Stretch

At Ease - SRD - 10

contact info, a description, and
various other common social
media profile components.

Building Pages A profile page for a building. It | Stretch
should include a description,
pictures, and a location.

Tenant Reviews Reviews of a tenant, covering | Stretch
their rent reliability and how
easy they are to rent to.

Manager Reviews Manager reviews, covering Stretch
how easy they are to rent from.

Building Reviews Building reviews, covering Stretch
quality, features, and livability.

Building Amenities A list of amenities available at | Stretch

the building.

Table 3.5 Reviews Functional Requirements

3.6 Matching System

Requirement Description Priority
Searchable Buildings Allow users to search the Stretch
database of buildings by name,
location, or amenities available.
Roommate Match Match tenants to other tenants | Stretch
who would be compatible
roommates, based on a survey.
Manager Match Match tenants to a nearby Stretch

manager or building, based on
a survey.

Table 3.6 Matching System Functional Requirements

At Ease - SRD - 11

4. Non-Functional Requirements

4.1 Rent
Requirement Description Priority
Financial Reliability | The payment system should be financially reliable, Essential
meaning that if there is a failure of some sort, no
money is moved or lost.
Use Stripe Integrate Stripe as a payment option. Medium
Use PayPal Integrate PayPal as a payment option. High
Use Google Wallet [Integrate Google Wallet as a payment option. Medium

Table 4.2 Rent Functional Requirements

4.2 Maintenance

Requirement Description Priority

Use Patse Store data in Parse. Essential

Maintenance Request Form Have a set form for tenants to enter data into | Essential
to create a maintenance request.

Customizable Form Allow managers to create their own custom Stretch
maintenance request form.

Store Pictures Have a storage system for the pictures Low
uploaded with maintenance requests.

Table 4.3 Maintenance Functional Requirements

4.3 Communication

Requirement Description Priority

Use Parse/Sinch Use a combination of Parse and Essential

At Ease - SRD - 12

Sinch to store and send messages
securely.

Use Parse Users Control user access using the Parse | Essential
User feature.

Bulletin Board Use a recyclerview to show the Low
Recyclerview Bulletin Board, and design the
layout to look like a physical one.

Door Note Graphics Design the graphics of the door Low
note system to actually look like a
whiteboard on a door.

Load Inbox Dynamically | When loading the inbox, Medium
dynamically show messages as they
load.
100+ Item Storage in Keep up to 100 items in an inbox High
Inbox of a user.

Table 4.4 Communication Functional Requirements

4.4 Reviews

Requirement Description Priority

Compute an Average Rating Compute an average rating Stretch
from all the ratings given to a
user or place.

Store 1000 character reviews Written reviews by a user Stretch
should be able to store up to
1000 characters, or more.

Table 4.5 Reviews Functional Requirements

4.5 Matching System

Requirement Description Priority

Advanced Search Menu Have a standard, easy to use Stretch
form to allow advanced
searching of users and
buildings.

At Ease - SRD - 13

Table 4.6 Matching System Functional Requirements

At Ease - SRD - 14

5. UML Diagrams

Note: Due to the scope of this project, only requirements that have been marked as “essential” will

be included in the diagrams found within this section.

5.1 Use Case Diagrams

5.1.7 Top-Level Use Case Diagram

The Top-Level use case diagram is shown in Figure 5.1. This shows a general overview of the
features that Actors of the system can access. The core features will be the main focus, while the
additional features and the stretch goal features will only be added if time permits, and the core

features are fully working.

Stretch Goal Features |
Additional Features
Core Features

Maintenance

Manager

X
/

00C

Communication

X

)

Matching System
Tenant o=y

9

Figure 5.1

At Ease - SRD - 15

5.1.2 Rent Use Case Diagram

The rent use case is shown in Figure 5.2. A Tenant can Pay Rent and Check Rent. A Manager can
Check Rent and Edit Rent. Pay Rent interacts with a third-party payment processing system, such as
PayPal.

Tenant

Check Payment
History

Payment Processor

Add Payment
Account

Manager

Figure 5.2

5.1.3 Maintenance Use Case Diagram

The maintenance use case is shown in Figure 5.3. A tenant can initiate requests and cancel requests
that are not needed. Managers can Close completed requests, which will then allow tenants to

jointly close the completed request.

At Ease - SRD - 16

Initiate Request

Tenant
Cancel Request

Close Request

Manager Tenant

Figure 5.3
5.1.4 Communication Use Case Diagram

The communication use case diagram is shown in Figure 5.4. Both tenants and managers can send

messages, receive messages, and archive messages.

Send Message

Tenant
Fead Messages

Archive
Messages

Manager

Figure 5.4

At Ease - SRD - 17

5.2 High Level Class Diagram

The high level class diagram is shown in Figure 5.5. The diagram shows some preliminary

relationships between classes that will exist in our system. We have not included full

implementation details in this version of the class diagram.

User 1
Message 0.* 1 - makes = "
f— = creates ——| firstname 0.
content R . lastname 1 0.*
timestamp 0. 2.7 email < recieves Payment
| viewed by * — phone 0+
= rents E_lmount
timestamp
1 1 1
Property
0.*| nickname
= can fuffill owns = street
city
state
= creates zipcode
0.* 0.F 1 | country
- - associated with = number
R t rent amount
eques o rent due date

type

details

comment

status

Figure 5.5

At Ease - SRD - 18

5.3 Activity Diagrams
5.3.1 Top-Level Activity Diagram

The top-level activity is shown in Figure 5.6. This activity outlines the way a User will navigate into

the other activities. The User will also be identified here as either a Tenant or a Manager.

Maintenance

[Maintenance]
managef

Rent
fmanagef

[Rent]

[stay]

[Manager]

[exit]

[exit] —>©

[exit]

WMessaging

IMessaging] > |
managef

Maintenance
fenang

...l Rent] | »
7| tenany) -

[Maintenance]

[Tenant]

[Rent]

[Messaging] > tenant-.

Figure 5.6

5.3.2 Maintenance (Manager) Activity Diagram

Major Activites

The Maintenance (Manager) activity is shown in Figure 5.7. This diagram outlines how a manager

can view maintenance requests, mark them as done, or add a comment to a maintenance request.

~ [back]

®

[back]

ick request]
lp .] Choose

maintenance
request

Choose a
property

[back]

[add comment]

Figure 5.7

At Ease - SRD - 19

[mark a completed request]

mark a request
as "done”

Add a
comment

5.3.3 Rent (Manager) Activity Diagram

The Rent (Manager) activity is shown in Figure 5.8. This diagram outlines how a manager can set
rent for a particular property, and view payment history of their tenants.

®

T [add payment acc ount]

[do not have payment account]

[

add payment
account
—

[choose property] [)
choosea

property
|

[edit rent]

b4

[have payment account]

view payment
history

[view pay ments] [check pay ments]

view pay ment
history

Figure 5.8

5.3.4 Messaging (Manager) Activity Diagram

The Messaging (Manager) activity is shown in figure 5.9. This outlines the process by which a
Manager can read, delete, and send messages to a Tenant.

© [delete messages]
r Delete Messages

[read messages]
. / :V [back] > -

n
[send message]
™) g
Choose a Send
tenant to 2 mMessage to
message tenant
v, \
LS A

Figure 5.9

At Ease - SRD - 20

5.3.5 Maintenance (Tenant) Activity Diagram

The Maintenance (Tenant) activity is shown in Figure 5.10. This illustrates how a Tenant can view
the different maintenance requests he has submitted, cancel or check the status of the request,

initiate a new request, or accept a request as completed.

| cancel a L
© | request |‘
A

[cancel request]

request

[back]
[view requests] [Check Status] close
5| Checka :Y completed

NS “| Request]

request

M
[back]
[Submit request]
|\ | Initiate | WAV
>»| Maintenance 'Y‘

Figure 5.10

5.3.6 Rent (Tenant) Activity Diagram
The Rent (Tenant) activity is shown in Figure 5.11. It outlines how a tenant can pay for their rent,

add a payment account, or check their payment history.

[check rent due] [have a payment ac count]

checkthe rent [pay reni]

duefor this
manth

' [add payment account]

[check payment history]

pay rent

[do not have pay ment account]

Add payment
account
checkyour
payment <
history T I
—

choose
payment
account

enteramount

Add payment
account

|

confirm
payment

At Ease - SRD - 21

5.3.7 Messaging (Tenant) Activity Diagram

The Messaging (Tenant) activity is shown in Figure 5.12. The activity describes how a Tenant can
read, delete, and send messages to a manager.

© [delete messages]
T Delete messages :]—\

[read messages]

[send messages]

Send

message to
manager

Figure 5.12

At Ease - SRD - 22

5.4 Sequence Diagrams

54.1 Pay Rent Sequence Diagram

The Tenant will open the Rent Pay Activity, then they will have to enter their credit card
information as well as the amount they want to pay. When the Tenant is done, they will click the
confirm button, which will start the process of making the Stripe.Card object with their card
information. The card will be validated and a Stripe.charge object will be created. The charge object
will hold the card object as well as the amount that the Tenant is paying. It will then process the
charge and the payment will be stored in our database. The sequence diagram for paying rent is

shown in Figure 5.13.

Tenant

|
-

RentPayActivity card t charge t
==Activity== Stripe.Card : Stripe.Charge
T Stripe Parse Database

Open Rent Pay

Enter Credit Card Info

Enter Amount

Click Confirm Button

createCard() r

validateCard()

createCharge()

processCharge()

processed()
f—————— e 3

storePayment(}

Figure 5.13

At Ease - SRD - 23

5.4.2 View Payment History Sequence Diagram

To View Payment History, the User (Tenant or Manager) will click the Payment History Activity.

The activity will get the payments from the database and display them in a list format through the

Payment History Recycler View. After the view is populated, all of the payments will be available

for viewing. The sequence diagram for viewing payment history is shown in Figure 5.14.

PaymentHistoryActvity
==Activity==

Usler

. Open Payment Histary

[
L

FParse Database

getPayments()

L 4

ParseQbject Bundle
e —————

populate¥iew(}

PaymentHistoryRecyclerview
==Recycleryiews==

e

Figure 5.14

At Ease - SRD - 24

5.4.3 Edit Payment Sequence Diagram

To Edit Payment Settings, the manager will open the Edit Payment Settings Activity. This activity
will have editable fields for the Manager to use to change their various settings. When the Manager
is finished editing their various settings, they can click the save button to save their new settings.
When the save button is pressed, the manager settings will be stored in the database and will be
effective immediately. The sequence diagram for editing payment is shown in Figure 5.15.

EditPayvmentSettingsActivity
==Actvity==

Manager T Parse Database
I
I
I

Open Edit Payment Settings

v

Change Values on Page

4

Click Save Button

h checkSettings()

-

savePaymentSettings()

Figure 5.15

At Ease - SRD - 25

544 Add a Payment Account Sequence Diagram

To add a payment account, a Manager must open the Stripe Connect Activity. The Stripe Connect
Activity will first set a new WebViewClient to the StripeWebClient. Once the StripeWebClient is
set, the Stripe Connect Activity will load the URL for the Stripe Connect Login webpage into the
webView that is displayed. The Manager must then enter their stripe information and successfully
login to their stripe account. Once successfully logged in to their stripe account, the
StripeWebClient will process the API response from Stripe and extract the authorization key. The
client then sends an authorization request to Stripe with this authorization key. A response will
come back from stripe containing the access Token information for the manager’s stripe account.
With this information At-Ease will be able to charge tenants on behalf of the manager and send the
money to the manager’s account. The access token information is stored in the database, and a
payment account has been successfully added to At-FEase. The sequence diagram for adding a
payment account is shown in Figure 5.16.

StripeConnectActivity stripeWebClient mWebView
==Activity=> ==WebViewClient=> ==WebView==
Manager T Parse Dlatanase

]

Stijpe

Add Stripe Account

setWebViewClient(stripeWebClient} ’—A—|

1
i 1
| |
I |
[] !
» '[bind() 1
l loadUrl{url}

Enter Stripe Info

Activation()

— Stripe_API_response authorization

fe—————————————————— b —

gethccessToken(details)

Stripe_API_response accessToken

storeAccessToken{accessToken) ; H
I:—l success() M »

-
i
1
1
1
|
|

Figure 5.16

At Ease - SRD - 26

54.5 Send Message Sequence Diagram

To send a message, a user (both tenant and manager), opens the List User Activity, which will list all
of the other AtEase users that they have access to communicate with. From the user perspective, it
runs very similarly to an average messaging component. The user chooses the message thread of
whom they wish to communicate, which opens the Message Activity. The Message Activity presents
a screen very similar to a typical messaging component, with an area to type a message at the bottom
of the screen. After the user types a message and sends it, the Message Service communicates with
the Sinch client that adds the message to the message thread for both the sender and the receiver.
The sequence diagram for sending a message is shown in Figure 5.17.

ListUserActivity MessadingActivity - essageService

T

I

I
openConversation() rJ“

Sirllch

onCreate()

I

I

I

I
1

sendMessage()

sendMessage()

onResume()

Figure 5.17

At Ease - SRD - 27

5.4.6 Read Message Sequence Diagram

Reading a message is very similar to sending a message, it just stops before the action of sending a
message. The user chooses the message thread from List User Activity, and the Message Activity
makes a call to the Parse database to get the history of all messages (read and unread) between the
two users. The Message Adapter formats the messages into the Message Activity that makes it into a
typical message thread (i.e. sender messages on the right, and receiver messages on the left). The

sequence diagram for reading a message is shown in Figure 5.18.

ListUserActivity MessagingActivity MessageAdapter

1 1 |
! onCreate() I : I
I
I openConversation() ,Jﬁ I :
| l |
I populateMessageHistory() I
: !
I

I «—— - — — — I
I | I
I addMessage() l
: |
| e dom e
| onResume() |
: | |
| - I [
| . I I I

I I I I
I 1 1 1 1
1

Figure 5.18

At Ease - SRD - 28

54.7 Initiate Maintenance Request Sequence Diagram

Figure 5.19 shows the sequence diagram for initiating a new maintenance request. This is a very
simple workflow. The user first initiates a new work order, which creates a
NewWorkOrderExpandableActivity. The new activity loads up with a screen for the user to enter
data into. Once the user has entered all of the data, they may submit. The user is prompted to ensure
that they want to take this action, and then the work order is saved to the Parse database. At this
point, the activity is finished.

NewWorkOrderExpandableActivity E |

T
I Parse Datahase
[

I 1

Tenant
1

| 1

! |

' |
l Initiate Request(} | |
| | !
I Fill cut form (data) | :
| submit() ! |
| Prompt() |
| Yes() |
| e o0 |
| SaveWorkOrder() _!
| SaveCallback(e) o
I - — — — — — - - — — — — — — — — — —I
™~ Fao— — L |
I I |
I I |
| I |
I I i
1 1

Figure 5.19

At Ease - SRD - 29

5.4.8 View Maintenance Request Sequence Diagram

The sequence diagram for the viewing of a Maintenance Request (Work Order) is shown in Figure
5.20. The first part of the sequence shows how the inbox is populated, which will be repeated in all
of the other maintenance request sequence diagrams as well. When a user opens the inbox, the
program searches the Parse database for all relevant work orders, and then displays them in a
recyclerview. A maintenance request is relevant if the current user is either the manager or the tenant
on said request. To view a maintenance request in detail, the user clicks on the respective item in the
recyclerview. The work order is then passed to the ViewWorkOrderActivity. This activity is almost
the same as the NewWorkOrderExpandableActivity, except all editable fields are now un-editable,
so this form is just to display all of the data in a maintenance request. When the user is finished, they
may close the form and leave the inbox, finishing all involved activities.

WorkOrderlnboxActivity InboxRecycler\View ViewWorkOrderActivity

User Parse Database

|
| [
| L

T T
: ! !
| ! !
| I I
Open Inbox | I |
GetWorkOrders | |
I >
| ParseObject Bundle | I |
| | I |
I | ' I
| . ' |
| |
| Populate(Bundle) |
! onclick()
[
| ViewWorkOrder (WorkOrder)
! Done() .
[
| lq — — — Finish)— —
‘-—— — — — — = — — — — — — —
| Finish() |
| I |
I I I |
1 1 | |
Figure 5.20

At Ease - SRD - 30

5.4.9 Close Maintenance Request Sequence Diagram

The sequence diagram for closing a maintenance request is shown in Figure 5.21. In this sequence,
the inbox is first populated as previously stated. Then, the user, specifically a manager in this case,
swipes an item in the list to the right. The manager is prompted to ensure he wants to do this, and
then an alert is sent to the tenant who opened the request. If the tenant agrees that the maintenance
request was resolved, then the work order is deleted.

WorkOrderinboxActivity InboxRecyclerView Dialog
T T T
Manfuger | Parse Dlarabase | | Ten‘am
! ' | ' ! !
\ A I I \ ‘
Open Inbox I | | |
| GetWorkOrders | | |
————————}
| ParseObject Bundle | | \ ‘
______ | ‘
| |
| ! ! | |
| I I | ‘
| m | |
‘ Populat%‘(Bundle) N |
I \
1 OnSwipeRight(l [
I 1 b ‘
| | Prompt() |
! lYeso |
f T |
! e T] |
\ | Closeq) I |
\ | CorfimWithTenant() N N
‘ I | vesp | |
! —————— - -———————— —'l“- ———————— 1
Delete(WorkOrder) | \
—J 1
Figure 5.21

At Ease - SRD - 31

5.4.10 Cancel Maintenance Request Sequence Diagram

The sequence diagram for canceling a maintenance request is shown in Figure 5.22. The inbox is
first populated as previously stated. Then a user, specifically a tenant in this case, swipes an item to
the right. The user is then prompted to ensure that they want to delete a maintenance request. If so,
the work order is then deleted from the Parse database.

WorkOrderlnboxActivity InboxRecyclerView Dialog

Tenant Parse Database
|

1
I
| I
| L
Open Inbox
GetWorkOrders

y_ _ __

ParseObject Bundle]
y— — — — — — —

I
I
I
I
I
I
I
I
I
L

Populate(Bundle)
1

Prompt()

I

I

I

I

I

I

I

| N
i OnSwipeRight() "
I

I

I

I

I

I

I

|

Figure 5.22

5.5 Detailed Class Diagrams
5.5.1 Entity Classes

This class diagram shows all of the entities of our System. Each class contained here will extend the
ParseObject in order to be easily mapped directly to the Parse Database. Other classes will have
access to each of these Entity Classes but those connections have been omitted for readability. The

entity class diagram is shown in Figure 5.23.

At Ease - SRD - 32

== gxtend Parsel bject==

Complex

1 | -ownerUser
-systent System
namesString

System

Building

1.%| -ownerUser
-complex Complex
namestring

Property

Message

-senderUser
-recipientUser 0.*

-messageTexd3iring
-sinchldString
-timestampDate

Request

-managerlser
-tenantUser
-pictFile
-picZFile

-nicknamestring
-imageFile
-addressAddress
-secondaryAddressstring
-ownerUser

-managerl)ser
-namestring

Address

-buildingBuilding
-rentAmountint
-nextRentDueDate
-prorateDaysint
-rentDueDayint
-occupiedBoolean

n

2
=1
w
=
1]
w

User

-first_nameString
-last_nameString 1

-street String
-city:String
-state:String
-Zipcode: String
-cauntry: String

Payment

-emailString
-Usernamestring

-passwordstring 1

-emailVierifiecBoolean
-isManagerBoolean

-pic3File
-subjectString
-text: String

-isTenanBoolean
-phonestring
-liveAtProperty

0.*

ManagerSettings

-managerllser
manualPaymentBoolean
-authorizedStripeBoolean
-UseStripePaymentsBoolean

-amaountint
-timestampDate
-managerlser
-tenantUser

StripAuth

-managerUser
-access_tokenString
-refresh_tokenString
-livemodeBoolean
-token_typeString
-stripe_publishable_kegtring
-stripe_user_idstring
-scopestring

Figure 5.23

At Ease - SRD - 33

5.5.2 Detailed Overview of Classes

This is a class diagram that details all of the classes we expect to have in our System. Currently,
these Classes should give us all of the functionality that we want in our application. A few of the
Entity classes are used throughout this diagram, it is assumed they would have an association, but
they have been omitted for readability. This diagram is broken into three large fragments, which can

be found in Figures 5.24, 5.25, and 5.26. The detailed overview of all the classes is shown in Figure
5.23.

wcantends Aty
Pry—
proerivin
o
~anCrealeSameSiata Sunde [rT—
HoginUsel) <<eaten 48 Recyclervie wiewHold e
nProgebticknamTadiow
“WFroperimagamageNien
MonRecirewaipotr O ot
NoworhOrdert spandabiociity <cextonts Recroe WiewAd R
cariends actuaye JE————
-properesList<Propany- Mamisten ety Ve
[—r— Curernssiisor
image. -
p— i Ao o S “WaiRocycher\ows agalmprcparios: sk Proporte]
ccamends qcaskss ol — iewdioup iea
PP ———— SamenCoud [——— T
- P <<aends Ao itg> oxionds Recarinemidepterrs
anichryRozulrequestCodeint rssullCote i dalx
sk 4 ot P —
e s maTan Dumansaruser
eire Gelimag: WN‘IIIPNP!Q‘WFIOVM’
e Hacden E—
et R T RN onhineter PaymanishonRety AR DRSNS LSkP sént)
- “anBincesboliicer Pasmenbisionietioldopos:)
WorkOrlerinboxActvity <<otands dcthitp> i . it
Pl iy “anCredcedsido Sendd
Toctba Tooloar o
recycertiew Recyceriben

A0SR BEyCIarVIaWATaSte!
oeTorction

“adaptertainRacyderiewsdaptar

RontPmtciniy
+onCressq savsastate Bundig. S <exdnnds Activity>
o [————
- << @NENDS R BCHRIVIE WVIEWH ol o>
g e CUMETUSSUS S0 i
T e— Hcantanesc aras e
+ACIWOIKOIGIPOR Ik woskDrdar WorkOrssr) <eenteinds ALV P> -WUseran VI!T?“N?"
T —— i
o aSecondarpiodressE difTest +Payment-aston \wewHoldanew | View)
s s e sl
Somnascions
[———v—
ccanangs Recys Wit omCraol savodnlonosSisks Bundlg EdiPognentSertingsacivity SuipeC onmectacavity spCountSpinaer
= e s

oenConsersamAes:

T JomCamrnacoanet SSEarsassens
- Aok p— P — oo
) comsecvsen esenvss
et VS . e e s s
o)] o crschsiong Piossasbamestiaa. kg
SoneinesHOETiow Reciclrseniewtckoarmos: o0 ‘ll I5PIcRe e
getan arormetms esecarn
ARonunar s o
i
S oo

Vi
SSEXTENS SWDET DACHI09. VIEWHOMIAT>

sonCiegidsaredsidte Bundy
nEMEETETViEN

datoViewT
~subjectiiewTedVies:

agesenice HSetings) S¥ing
ok SwripewkbienClient
i <a118 0 WEDVIOWC 1>
[——— B ——— |
+populaieiessagaHistoty

<cnageSiaredsic. Webhiew ul. i)
~senduessage onageFineshogiew - Webiew ul- Sirng
~anDestion) Messgeisapter snonlomemﬂeunmmlluew ‘et un: s
eanlangs Bussidupters> “gethce
Messspsanics DRECTION_MCOMNGN:
em ek

-DIRECTION_QUTGOMNGiNL

-sesricsiniariacebessage Serdcelnisriace RO SA0HMATEA08 WIESDIEMES 308 direction Inl
~sinehClien SinchCliert

“MRESLECHINAS836CHen
~cumsnUsaUT

L —pp——
+slariSinchClienlusemams S¥in
+5eniMEssR0EipiRATUSS Bt ledBody. Sting

Figure 5.23

At Ease - SRD - 34

5.5.3 Class Diagram for Payments

This is a close-up of the Payment Activity Classes from the Detailed Class Diagram. Fach of the
Payment Activities that is associated with the Main activity corresponds to use cases and they each

serve an independent purpose. The class diagram for payments is shown in Figure 5.24.

PaymentHistoryActivity
<=extends Activity>>

-toolbarToolbar
-currentUserUser
-currentProperyPropery
-recyciverview RecyclerView

-adaptetPaymentHistoryRecyclernviewAdapter

PaymentHistoryRecycle r'ViewAdapater
<<extends Recycle ViewAd apter>>

-paymentsList=Payment
-currentUserUser

MainActivity
<<extends Activity»>

+onCreatgsavedState ‘Bundle
+populateView)

+PaymentHistoryRecyclverViewAdapatapayments: LiskPayment=)
+onCreateViewHoldgparent: ViewGroup viewType : inf) PaymentHistoryViewHolder
+onBindViewHolddholder. PaymentHistoryViewHoldemos: inf)

+getitemCount} int

-toolbarToolbar

-currentUserUser

-recyclerView RecyclerView
-adapteriMainRecyclerviewAdapter

+onCreatgsavedState Bundlg
+populateView)

EditPaymentSettingsActivity
<<extends Activity>

-toolbarToolbar
-currentUserUser
-currentPropertyProperty
-etRentAmountEditText
-dpnextRentDueDatePicker
-etProrateDays
-etRentDueDay
-tvAuthorizedStripe
-swhanualPayments
-swUseStripe

-btnSave

+onCreatgsavedState:Bundle
+checkSettingd) String
+savePaymentSetiings)

RentPayActivity

<<zextends Activity>>

-toolbarToolbar
-currentUserlUser
-etCardMumberEditText
-etCVC: EditText
-etNameEditText

-etPrimaryAddressEditText
-etSecondaryAddressEditText
-etCity:EdiiText
-spStateSpinner
-etZipcodeEditText
-spCountrySpinner

StripeC onnectActivity
<<extends Activ ity>>

-spExpMonthSpinner
-spExpYearSpinner
-btnSubmitButton

-toolbarToolbar
-currentUserUser

L= -mWebViewWebView

-redirectUrlString
-progressProgressBar

Paymen tHistoryViewHolder
<<extends RecyclerviewViewHold er=>»

-Amount TextView
-Date TextView
-tvlserNameTextView

+PaymentHistoryViewHolddriew : View)

+onCrealgsavedState Bundlg
+ProcessPaymentcard : Card)
+displayMessagémsg : String}
+createCard)
+createChargd)

+onCrealgsavedState Bundlg

StripeWebViewClient
<<extends WebViewClient>>

+onPageStartedview : WebView url: String)
+onPageFinishediew : WebView url: String
+shouldOverrideUrlLoadingiew : WebView, url: String)
+getAccessTokendetails: String) String

Figure 5.24

At Ease - SRD - 35

5.5.4 Class Diagram for Messaging

This is a close-up of the Messaging Activity Classes from the Detailed Class Diagram. The List User
Activity is connected to the main activity, and the activities and entities related to messaging are
connected to List User Activity. The class diagram for messaging is shown in Figure 5.25

MainActivity Listl serActivity
<<zextends Activity=> <<Zextends Activity=>
-toolbarToolbar -currentdser User
-currentUserUser -names ArrayList=String=
-recyclerView RecyclerView -userListView ListView

-adapterMainRecyclerViewAdapter

+onCreatd savedinstanceState Bundleg
I +setConverstaionsLigt

+onCreatg savedState Bundle +openConverstaionames:
+populateView) ArrayList=String=, pos: int)
+onResumed)
MessageService v
==gxtends Service==

Messaging Activity
| ==gxtends Activity==

-semnvicelnterfaceMessageSenicelnterface
-sinchClient SinchClient
-messageClientMessageClient -recipientldstring
-currentUserlUser G | -messageBodyFieldEditText
-messageBodyString
| -messageSenicellessageSenvice
+onStantCommandintent: Intent flags: int starld: int) -messagesLististview
+stantSinchClienfusername String) -currentUserlser
+sendMessagéecipientUserldBtring textBody . String)

+onCreatgsavedinstanceState Bundle
+populateMessageHistofy
+sendMessagé)

+onDestroy)

Messagefdapter
==gxtends BaseAdapter==

-DIRECTION_INCOMINGNt K>
-DIRECTION_OUTGOINGInt

+addMessaggmessage WritableMessagedirection: int)

Figure 5.25

At Ease - SRD - 36

5.5.5 Class Diagram for Work Orders

This is a close-up of the Work Order Activity Classes from the Detailed Class Diagram. The Work
Order Inbox and the New Work Order Activity both connect to the Main Activity. The class
diagram for work orders is shown in Figure 5.26

NewWorkOrderE xpandableActivity

Getimages <=<extends Activity>>

<<axtends AsyncTask»>] i il

-sliderShow SliderLayout

- . : -image_descriptionArrayList=String=
progDialogProgressDialog -image_listArrayList=String=

-image_drawableArrayList=Drawable

+onPreExecute)
+dolnBackgroundparams Void..} . il
+onPostExecutdresultVioid) :gggtrggtasavedlnstanceStateElunclle_.l
+0nAdivifyResultrequestCodeint, resultCodeint data:
Intent
+updatelmageTablg
Getlmages

+loadimagefromuticon Bitmapg Drawable
+submitWorkOrderview: View)

WorkO rderinboxActivity
<=extends Activity=>

-toolbar Toolbar] -
-recyclerView RecyclerView oy exeaag’;‘mﬁ:ﬁm>
-adapter WOrkOrderinboxRecyclerViewAdapter

swipeToAction SwipeToAction _toolbarToalbar

-currentUserlser

-recyclerView RecyclerView
-adaptetMainRecyclerViewAdapter

+onCreatgsavedinstanceState Bundleg
+populateFromParsauser. ParselUsej
+displaySnackbaitext. String actionMame String,
action ViewOnClickListeney i

+removeWorkOrderworkQrder WorkOrder) +0nCreatE[:£_.axr|?dState:Bundle}
+addWorkOrderpos int, workQrder WorkOrder} +populateView}
WorkOrderViewHolder
<=zgxtends SwipeT oAction.ViewHolder>>
WorkOrdeinboxRecyclerViewddapater -nameViewtTextView
<<extends Recycle ViewAd apters> ——< -dateViewTextView

| -subjectViewTextView
-workQrders ListWorkOrder=

| +WorkOrderViewHoldefview : View)

+WorkOrderlnboxRecyclverViewAdapatefinWarkOrders: List=WorkOrder=}
+onCreateViewHoldaparent: ViewGroup viewType : int}

WorkOrderViewHolder
+onBindViewHoldgholder: RecyclerViewViewHolderpos: int)
+getitemCount) int

Figure 5.26

At Ease - SRD - 37

